Materiał nauczania Materiały stosowane w elektrotechnice do budowy maszyn i urządzeń, zwane materiałami elektrotechnicznymi, mają ogromny wpływ na wydajność procesów technologicznych, poziom techniczny wytwarzanych maszyn oraz ich nowoczesność i niezawodność.
Zwiększające się potrzeby dotyczące efektywności energetycznej budynków stymulują doskonalenie dotychczas stosowanych wyrobów do izolacji cieplnej oraz wykorzystanie nowych materiałów (np. aerożeli) i wyrobów (np. izolacji próżniowych). Ze względu na charakterystykę energetyczną wyrobów do izolacji cieplnej istotną właściwością techniczną jest opór cieplny (lub współczynnik przewodzenia ciepła). Jego wartość, deklarowana przez producenta, powinna być zapewniona w czasie przewidywanego okresu prawidłowej eksploatacji danego wyrobu budowlanego (na ogół jest to nie mniej niż 25 lat). Większość wyrobów do izolacji cieplnej – zarówno produkowanych fabrycznie w formie płyt, mat itp., jak i materiałów sypkich do formowania na budowie – jest objęta normami europejskimi. Te wyroby to – z wełny mineralnej (wgPN-EN 13162); – ze styropianu (wg PN-EN 13163); – z polistyrenu ekstrudowanego (wg PN-EN 13164); – z pianki poliuretanowej i poliizocyjanurowej (wg PN-EN 13165); – z pianki fenolowej (wg PN-EN 13166); – ze szkła piankowego (wg PN-EN 13167); – z wełny drzewnej (wg PN-EN 13168); – z ekspandowanego perlitu (wg PN-EN 13169); – z ekspandowanego korka (wg PN-EN 13170); – z włókien drzewnych (wg PN-EN 13171); – formowane in situ z zastosowaniem: – ekspandowanego perlitu (wg PN-EN 14316-1); – lekkiego kruszywa z pęczniejących surowców ilastych (wg PN-EN 14063); – wermikulitu eksfoliowanego (wg PN-EN 14317); – wełny mineralnej w postaci niezwiązanej (wg PN-EN 14064); – pianek poliuretanowych (wg PN-EN 14315). Rys. 1 Orientacyjne wartości współczynnika przewodzenia ciepła różnych rodzajów izolacji cieplnych Na inne wyroby (w tym innowacyjne, np. maty z izolacją cieplną na bazie aerożeli oraz tzw. izolacje refleksyjne) wydane były krajowe lub europejskie aprobaty techniczne (obecnie oceny techniczne). Na rys. 1 podano orientacyjne wartości współczynnika przewodzenia ciepła w odniesieniu do ww. rodzajów izolacji cieplnej stosowanej w budownictwie. Zwiększające się wymagania i potrzeby dotyczące efektywności energetycznej budynków wytyczyły jeden z najważniejszych kierunków rozwoju nowych technologii budowlanych. Jest on związany z termoizolacjami i ich stosowaniem w przegrodach zewnętrznych budynków oraz w instalacjach grzewczych. Postęp w tej dziedzinie techniki budowlanej realizuje się obecnie głównie przez: – doskonalenie najczęściej stosowanych rodzajów wyrobów do izolacji cieplnej, takich jak wełna mineralna, styropian oraz różne rodzaje pianek polimerowych; – wykorzystanie nowych materiałów dotychczas niestosowanych w budownictwie (np. aerożeli) oraz nowych rodzajów wyrobów (np. izolacji próżniowych). Podejmuje się również próby zastosowania tzw. transparentnych izolacji cieplnych. Dzięki nim zyski słoneczne mogą być pozyskiwane przez całą obudowę budynku. Rys. 2 Grubość izolacji cieplnej odpowiadająca wybranym wartościom współczynnika przenikania ciepła, w zależności od współczynnika przewodzenia ciepła Podstawowym celem pozostaje jednak uzyskanie wyrobów izolacyjnych o jak najniższej wartości współczynnika przewodzenia ciepła. Jest to konieczne, aby efektywnie ograniczyć straty spowodowane przenikaniem ciepła przez obudowę. Zwiększenie zapotrzebowania na takie wyroby wynika z obecnie obowiązujących wymagań dotyczących izolacyjności cieplnej przegród oraz przewidywanego zaostrzenia tych wymagań, które jest związane z wdrożeniem postanowień dyrektywy Parlamentu Europejskiego i Rady 2010/31/ UE z dnia 19 maja 2010 r w sprawie charakterystyki energetycznej budynków Stosowanie się do tych postanowień pozwala spełnić wymagania związane z maksymalną dopuszczalną wartością współczynnika przenikania ciepła U przez przegrody (przy małych grubościach warstwy izolacji cieplnej). Również w tzw. budynkach pasywnych, w których przegrody muszą mieć współczynnik przenikania ciepła mniejszy niż 0,15 W/(m2K), użycie termoizolacji o współczynniku X 0,04 W/(mK) wymaga warstwy o grubości przekraczającej 25 cm. Tradycyjne wyroby do izolacji cieplnej dostępne obecnie na rynku (takie jak wełna mineralna, styropian EPS oraz polistyren ekstrudowany XPS) charakteryzują się współczynnikiem przewodzenia ciepła od ok. 0,03 W/(mK). Płyty z pianek uzyskują natomiast wartości od 0,02 W/(mK). Najniższe wartości współczynnika X uzyskuje się obecnie w wyrobach zawierających aerożele krzemionkowe: od ok. 0,015 W/(mK) w matach oraz od ok. 0,007 W/(mK) w panelach próżniowych. Zastosowanie izolacji cieplnej z paneli próżniowych umożliwia uzyskać współczynnik przenikania ciepła równy 0,15 W/(m2K), przy zaledwie kilkucentymetrowej warstwie. Rys. 3 Zdjęcie mikroskopowe maty wypełnionej granulatem aerożelowym [2] Rys. 4 Fragment maty z granulatem aerożelowym Szczególną grupę wyrobów stanowią izolacje cieplne z aerożelem krzemionkowym – porowatym materiałem powstającym w wyniku usunięcia ciekłego składnika żelu. Faza stała tworząca strukturę aerożelu stanowi mniej niż 10%. Pierwsze badania nad tym materiałem prowadzono już w latach 30. XX w., przy czym w długotrwałym i żmudnym procesie uzyskiwano wówczas niewielkie ilości aerożelu. Brak konkretnych zastosowań tego materiału spowodował, że został on praktycznie zapomniany aż do lat 80. XX w. Wtedy opracowano nowy wydajny sposób wytwarzania go na drodze chemicznej metodą zol-żel. Obecnie znanych jest kilkadziesiąt rodzajów aerożeli. Na ogół są to materiały odporne na ściskanie, jednak zwykle są też kruche oraz nieodporne na uderzenia, skręcanie i ścinanie. Najbardziej popularny w zastosowaniach praktycznych jest aerożel krzemionkowy, który w postaci granulatu (o wielkości ziaren od ok. 0,01 do 4 mm) stosuje się w różnych rodzajach wyrobów do izolacji cieplnej. Nanometryczny rozmiar większości porów aerożelu krzemionkowego (przeciętnie o rozmiarze ok. 20 x 10'9 m) znacznie utrudnia przenoszenie ciepła przez powietrze znajdujące się w tym materiale. Dzięki temu charakteryzuje się on najniższą przewodnością cieplną wśród materiałów stałych. Granulaty aerożelu krzemionkowego stosuje się np. jako wypełnienie w matach z włókien szklanych lub polimerowych, które są wykonane z naskórkiem i umożliwiają utrzymanie w nich ziaren (rys. 3). Maty charakteryzują się współczynnikiem przewodzenia ciepła od ok. 0,014 do 0,020 W/(mK). Ponieważ mają one grubość od 3 do 10 mm (rys. 4), stosuje się również układy wielowarstwowe. W warstwie izolacji cieplnej wykonanej z granulatu aerożelowego występuje promieniowanie cieplne oraz jego przewodzenie: przez krzemionkę w stykających się ziarnach, przez powietrze w porach i między ziarnami. Rys. 5 Charakterystyka zależności współczynnika przewodzenia ciepła granulatów aerożelowych od ciśnienia [1] Aby zmniejszyć przenoszenie ciepła przez powietrze, granulat można umieścić w panelach lub szybach zespolonych, w których się wytwarza podciśnienie. Zmiany współczynnika przewodzenia ciepła przez granulat aerożelowy (w zależności od ciśnienia) pokazano na rys. 5. Do znacznego spadku przewodnictwa cieplnego w porach dochodzi przy zredukowaniu ciśnienia do ok. 100 hPa. Aby zmniejszyć wymianę ciepła przez promieniowanie, stosuje się dodatki zmniejszające jego przepuszczalność, np. grafit (podobnie jak w szarych płytach styropianowych). Granulaty aerożelowe w warunkach podciśnienia stosuje się w tzw. panelach próżniowych, nazywanych również panelami VIP (Vacuum Insulation Panel). Są to wyroby termoizolacyjne składające się z rdzenia wykonanego z materiału sypkiego umieszczonego w szczelnej osłonie, która umożliwia wytworzenie i utrzymanie znacznego podciśnienia we wnętrzu paneli po usunięciu z nich powietrza (rys. 6). Wyroby te początkowo stosowano w izolacjach w chłodnictwie, obecnie zaś dostępne są również w postaci płyt do izolacji cieplnej przegród budowlanych o grubości do ok. 50 mm. Rys. 6 Schemat budowy panelu VIP: 1 – osłona, 2 – włóknina, 3 – granulat aerożelowy [1] Rys. 7 Schemat ocieplenia przegród od wewnątrz Wartość współczynnika przewodzenia ciepła w centralnej części panelu (poza zasięgiem mostków cieplnych na krawędziach), przy ciśnieniu wewnętrznym poniżej 5 hPa, zawiera się na ogół w zakresie od 0,0035 do 0,0048 W/ (mK). Jest to wartość początkowa, która z czasem się pogarsza w wyniku przenikania powietrza przez osłonę i zwiększania się ciśnienia w panelu, zwykle o ok. 1 hPa rocznie. Najszczelniejsze dyfuzyjnie osłony wykonane są z powłoki metalowej: przeważnie aluminiowej o grubości od 8 do 12 pm lub stalowej nierdzewnej o grubości 5075 pm. Ewentualnie stosuje się osłony z wielowarstwowych folii metalizowanych. Warstwa metalowa chroni przed stratami ciśnienia we wnętrzu paneli, ale przez swoją wysoką przewodność cieplną tworzy mostki cieplne na ich krawędziach. Do określania izolacyjności cieplnej przegród budowlanych służy projektowa wartość współczynnika przewodzenia ciepła paneli VIP Jest ona miarodajna, ponieważ uwzględnia zarówno efekt starzenia, jak i straty krawędziowe. Zwykle zawiera się od ok. 0,007 do 0,008 W/(mK). Jeśli dojdzie do uszkodzenia osłony panelu, ciśnienie w jego wnętrzu wyrówna się do wartości ciśnienia atmosferycznego. Współczynnik przewodzenia ciepła w części centralnej panelu wzrośnie wtedy do ok. 0,02 W/(mK), czyli do wartości w odniesieniu do samego granulatu. Oznacza to, że nawet w takim stanie wymienione wyroby termoizolacyjne zachowują niską przewodność cieplną. Rys. 8 Najniższe wymagane wartości współczynnika przenikania ciepła ścian w kolejnych wydaniach Polskich Norm i przepisów Zastosowanie aerożelowych izolacji cieplnych w budynkach Wyroby do izolacji cieplnej na bazie aerożeli krzemionkowych (maty, płyty, panele próżniowe) są stosowane w budownictwie od blisko dziesięciu lat, przy czym ich cena jest wysoka w porównaniu z tradycyjnymi termoizolacjami. Ponadto panele próżniowe wymagają bardzo ostrożnego transportu, składowania i postępowania z nimi w czasie wbudowywania ich w przegrodę. Nie dopuszcza się również jakiegokolwiek mocowania przez warstwę izolacji cieplnej. Panele próżniowe nie mogą być przycinane, w związku z czym rozkład i wymiary elementów izolacji przegrody muszą być ustalone w projekcie i przygotowane przez odpowiednie programy komputerowe. Podstawową zaletą tych wyrobów jest mały współczynnik przewodzenia ciepła. Decyduje on o tym, że aerożele stosuje się przede wszystkim w miejscach, w których istnieje konieczność ograniczenia grubości izolacji cieplnej, np.: – w ociepleniach od wewnątrz – w budynkach użytkowanych, w których istnieje konieczność zachowania oryginalnego wyglądu elewacji (zabytki, budynki ze ścianami w postaci fugowanego muru z cegły, z okładziną kamienną, znaczną liczbą detali elewacyjnych); – na ościeżach otworów okiennych i drzwiowych; – płytach tarasowych nad ogrzewanymi pomieszczeniami; – nad lub pod stropem najniższej kondygnacji ogrzewanej; – w konstrukcjach szkieletowych; – w części nieprzezroczystej metalowo-szklanych ścian osłonowych. Ponadto elastyczne maty z wypełnieniem aerożelowym stosuje się w ramach okiennych i słupach, w ryglach ścian osłonowych z kształtowników metalowych mających przekładki termiczne, a także w płycinach drzwi zewnętrznych. Maty mogą być również stosowane jako cienkowarstwowa izolacja cieplna elementów instalacji grzewczych. W systemach ociepleń, które stosuje się na wewnętrznej powierzchni przegród, dostępne są również płyty klinowe do obwodowej izolacji cieplnej na przegrodach wewnętrznych. Płyty te zapewniają ochronę przed powierzchniową kondensacją pary wodnej na powierzchniach stropów i ścian wewnętrznych, a także w połączeniach ze ścianami zewnętrznymi (rys. 7). Aby zapewnić ochronę paneli próżniowych przed uszkodzeniami, produkuje się wyroby wielowarstwowe. Składają się one z rdzenia, którym jest panel VIP, i są stosowane w okładzinach płyt różnego rodzaju, np.: MDF, gipsowo-kartonowych, cementowych, styropianowych EPS lub z ekstrudowanej pianki polistyrenowej. Możliwe jest jednoczesne zastosowanie np. tynkowania oraz tradycyjnych sposobów mocowania na zaprawy klejące. Asortyment wymienionych wyrobów oferowanych na rynku europejskim i opartych na nich systemów izolacji cieplnej stale się poszerza. Można przypuszczać, że w najbliższych latach – wraz ze zwiększaniem się liczby budynków o niemal zerowym zapotrzebowaniu na energię – aerożelowe izolacje cieplne staną się jedną z głównych technologii termoizolacji przegród. Tab. Maksymalne dopuszczalne wartości współczynnika przenikania ciepła przez przegrody Temperatura ogrzewanego Współczynnik przenikania ciepła przez ściany, W/(m2K) pomieszczenia od 1 stycznia 2014 r. od 1 stycznia 2017 r. od 1 stycznia 2021 r.* > 16°C 0,25 0,23 0,20 > 8°C, <16°C 0,45 0,45 0,45 < 8°C 0,90 0,90 0,90 * Od 1 stycznia 2019 r. w przypadku budynków zajmowanych przez władze publiczne oraz będących ich własnością. Ściany zewnętrzne Współczesne wymagania stawiane budynkom w zakresie izolacyjności cieplnej przegród są znacznie ostrzejsze niż w przeszłości. Historię zmian dopuszczalnych wartości współczynników przenikania ciepła przez ściany pokazano na rys. 8. Ostatecznie w 2021 r. dopuszczalne wartości tych współczynników mają być ok. sześciokrotnie niższe niż pierwotnie. Ściany zarówno nowych budynków, jak i tych podlegających przebudowie muszą się charakteryzować współczynnikiem przenikania ciepła nieprzekraczającym maksymalnych dopuszczalnych wartości, które podano w tabeli. dr inż. Robert Geryło Instytut Techniki Budowlanej Uwaga: Artykuł ukazał się w nr. 4/2016 czasopisma „Budownictwo i Prawo”. Jest fragmentem książki Nowoczesny standard energetyczny budynków, Oficyna Wydawnicza POLCEN, Warszawa 2015 (więcej informacji o książce: www. Bibliografia 1. R. Geryło, Nowe technologie w termoizolacjibudynków, „Inżynier Budownictwa” nr 11/2013. 2. B. Pietruszka, R. Geryło, Materiały izolacyjne na bazie aerożeli, „Materiały Budowlane” nr 1/2011. S. Mańkowski et al., Opracowaniekońcowestrategicznego projektubadawczego pt. „Zintegrowany system zmniejszania eksploatacyjnej energochłonności budynków”, Zadanie badawcze nr 2 pt. „Opracowanie optymalnych energetycznie typowych rozwiązań strukturalno-materiałowych i instalacyjnych budynków”, NCBiR: SP/B/2/76638/10.Systemy i technologie stosowane w konstrukcji cholewki. adiDRY – system polegający na zastosowaniu wodoodpornej wewnętrznej membrany zgrzewanej z wodoodporną taśmą oraz szwami. Rozwiązanie stanowi idealną barierę przed wilgocią, a przy tym zapewnienia wysoki poziom wentylacji, dzięki czemu skóra pozostaje sucha. Z elektrycznością stykasz się wszędzie. Poznajesz coraz więcej skutków jej oddziaływania. Na przykład, pierwotnych ludzi przerażała błyskawica, uderzenie pioruna, jego niszczycielskie skutki. Te wielkie wyładowania elektryczne nam już są dobrze znane. Boimy się burzy, ale wiemy, że choć moc elektryczna wyładowań atmosferycznych jest olbrzymia, to jednak - ze względu na krótki czas tych wyładowań - ich energia nie jest duża. Nie opłaca się nawet korzystać z tego naturalnego źródła energii elektrycznej. Musimy natomiast coraz lepiej zapobiegać negatywnym skutkom wyładowań elektrycznych. Pierwszy zadbał o to Benjamin Franklin w roku 1752, instalując na wieży kościoła piorunochron. Uczeni ciągle odkrywają coś nowego z zakresu elektryczności i dają tym podstawy do konstruowania coraz to lepszych urządzeń. Świadectwem tego jest bardzo szybki rozwój elektroniki, komputerów, różnego sprzętu elektronicznego i elektrycznego. Na pewno chcesz, żeby urządzenia, z którymi stykasz się na co dzień, nie były Ci obce, nieprzyjazne, a nawet czasem niebezpieczne. Musisz wiedzieć, że ta pożyteczna elektryczność, która jest w domu, w każdym gniazdku elektrycznym, dostępna dla każdego, może człowieka porazić. Doprowadzona do urządzenia duża energia pomaga Ci pracować, uwalnia od fizycznego wysiłku. Ale czasem wymyka się spod Twojej kontroli, zwłaszcza wtedy, kiedy popełnisz błąd w obsłudze sprzętu elektrycznego. Tylko wiedza i umiejętności praktyczne z zakresu elektrotechniki mogą Cię ustrzec przed wypadkiem. Wiedzę tę będziesz czerpał z różnych źródeł. Na lekcjach fizyki poznasz fizyczne podstawy elektrotechniki i elektroniki, a na lekcjach techniki zetkniesz się z różnymi sytuacjami, w których zjawiska te będą miały zastosowanie praktyczne. Na zajęciach z techniki będziesz poznawał elektrotechnikę począwszy od przewodników i izolatorów, potem dowiesz się, jak się wytwarza energię elektryczną. Poznasz sposoby korzystania z tej energii. Zadania praktyczne będą dotyczyły obsługi urządzeń, montażu bardzo prostych przedmiotów technicznych i projektowania elementarnych układów lub zmian w układach. Pomiary elektryczne będą związane głównie z zadaniami praktycznymi, a zagadnienia bhp, ekonomii i ekologii będą powiązane z różnymi tematami zajęć. PRZEWODNIKI ELEKTRYCZNOŚCI I IZOLATORY W elektrotechnice stosuje się wiele różnych materiałów. Ogólnie można je podzielić na trzy grupy: przewodzące prąd elektryczny (przewodniki), nie przewodzące prądu elektrycznego (izolatory), półprzewodniki. Do materiałów przewodzących prąd elektryczny należą metale, np. srebro, miedź, aluminium, mosiądz, stal i stopy oporowe. Do materiałów nie przewodzących prądu elektrycznego należą np. ceramika, jedwab, papier, oleje, powietrze. Sądzę, że podasz jeszcze więcej przykładów tych materiałów. Może też wyróżnisz z nich takie materiały, które przewodzą prąd elektryczny bardzo dobrze i takie, które przewodzą gorzej, a także bardzo dobre izolatory Przewodniki elektryczności Z materiałów przewodzących prąd elektryczny na pewno wyróżniłeś miedź i jej stopy, gdyż ze względu na swoje cenne właściwości (przede wszystkim małą oporność właściwą) należą one do materiałów najszerzej stosowanych w przemyśle elektrotechnicznym. Około połowy światowego zużycia miedzi przeznaczone jest na cele tego przemysłu. Każdy materiał przewodzący prąd elektryczny ma swoją określoną rezystancję (w fizyce stosuje się określenie: oporność elektryczna). Jednak wartość tej rezystancji rośnie w funkcji temperatury. Na przykład rezystywność (oporność właściwa) wolframu wynosi w temperaturze 20 °C - 0,055 [Omm2/m], w temperaturze 1200 °C - 0,4[Omm2/m],a w temperaturze 2400 °C - 0,85[Omm2/m]. W temperaturach bardzo niskich, bliskich zeru bezwzględnemu, niektóre ciała tracą rezystancję. Stają się nadprzewodnikami. Prowadzi się badania naukowe w zakresie nadprzewodnictwa w celu wykorzystania tego zjawiska w technice. Elektrotechników interesują nie tylko materiały o małej rezystywności. Wykorzystują oni również materiały, które mają wyższe od miedzi rezystywności, np. konstantan (Cu 55% i Ni 45%) - 0,458[Omm2/m], Konstantan i inne materiały oporowe stosowane są w różnych grzejnikach. Materiały oporowe, ze względu na różne temperatury pracy dzieli się na trzy grupy. Do pierwszej grupy należą materiały o niskiej temperaturze pracy (do 500 °C),do drugiej - o średniej (500-s-lOOO °C) i trzeciej - o wysokiej temperaturze pracy (powyżej 1000 °C). Na przykład stosowana w grzejnikach chromonikielina (Ni 80% i Cr 20%) ma temperaturę topnienia 1400 °C, a najwyższą temperaturę zastosowania 1150 °C. i gorsze izolatory. Tkaniny grzejne stosowane na poduszki i kołdry elektryczne zawierają cienki drut oporowy z konstantatu lub chromonikieliny owinięty śrubowo na nici szklanej. Pytania i zadania 1. Czy znasz metale lepiej przewodzące prąd elektryczny niż miedź? 2. Na jakie grupy możesz podzielić materiały oporowe? 3. Wymień urządzenia elektryczne, w których są zastosowane materiały oporowe. 4. Jaką moc mają urządzenia w Twoim domu, w których zastosowano grzałki elektryczne? Izolatory Znaczenie materiałów izolacyjnych w elektrotechnice jest ogromne, ponieważ mają one za zadanie przeciwdziałać przepływowi prądu elektrycznego w niepożądanym kierunku. W gospodarstwie domowym lekceważymy często izolacyjne elementy urządzeń elektrycznych i z tego powodu dochodzi do wielu wypadków, porażeń prądem elektrycznym, poparzeń i pożarów. Istnieje wiele materiałów izolacyjnych pochodzenia roślinnego, zwierzęcego i mineralnego, również z tworzyw syntetycznych. Ich klasyfikację można przeprowadzić na podstawie różnych kryteriów. Ze względu na stan skupienia oraz pochodzenie materiały te można podzielić na: gazowe, płynne i stałe. Inny sposób klasyfikacji opiera się na odporności materiałów izolacyjnych na temperaturę. Okres trwałości właściwości izolacyjnych zależy bowiem od rodzaju materiału i od temperatury pracy. Na przykład obniżenie temperatury pracy o 8 °C - w stosunku do temperatury znamionowej - dla izolacji bawełnianej, papierowej nasyconej lakierami olejowymi podwaja czas trwania izolacji; gdy podwyższymy o 8 °C temperaturę, to czas trwania izolacji skraca się o połowę. Pamiętaj o tym, że nawet tak odporne na temperaturę materiały, jak ceramika, szkło mają ograniczoną najwyższą temperaturę pracy ciągłej. Pamiętaj również o tym, że w każdym materiale nie przewodzącym prądu elektrycznego może dojść do przepływu prądu w określonych warunkach (wysoka temperatura, silne pole elektryczne, wilgoć). Każdy materiał izolacyjny posiada bowiem wolne elektrony lub jony, które w pewnych warunkach mogą przewodzić prąd. Tylko w próżni nie ma zupełnie nośników elektrycznych. Jakość izolatorów określa się na podstawie ich właściwości elektrycznych. Jedną z nich jest wytrzymałość na napięcie (przebicie). Przebicie powietrza pomiędzy elektrodami płaskimi odległymi o 1 cm wynosi ponad 30000 V (30,2-31,6 kV). Wytrzymałość na przebicie rośnie proporcjonalnie wraz z ciśnieniem atmosferycznym. Pytania i zadania 1. Wymień urządzenia elektryczne, w których zastosowano izolację z tworzyw sztucznych i materiałów pochodzenia mineralnego. 2. Które urządzenia domowe zawierają układ wysokiego napięcia? Określ w przybliżeniu wysokość napięcia. 3. Czym grozi przebicie izolacji w układzie wysokiego napięcia? 4. W jakich warunkach części izolacyjne domowych urządzeń elektrycznych mogą przewodzić prąd? Czy bezpieczne jest korzystanie w łazience z suszarki do włosów? WYTWARZANIE ENERGII ELEKTRYCZNEJ Prądnice Obecnie najwięcej energii elektrycznej powstaje w uzwojeniach różnych prądnic. Dowiesz się z lekcji fizyki, że w przewodniku powstaje napięcie elektryczne wtedy, kiedy ten przewodnik znajduje się w zmiennym polu magnetycznym. Są możliwe takie sytuacje, że przewodnik porusza się w polu magnetycznym, np. trwałego magnesu, lub odwrotnie - trwały magnes porusza się i wtedy pole magnetyczne zmienia się wokół stojącego przewodnika. Możliwa jest też trzecia sytuacja, że ani magnes, ani przewód nie poruszają się. Dzieje się tak, gdy trwały magnes zastąpimy elektromagnesem i jego uzwojenie jest zasilane zmieniającym się prądem (zmienia się kierunek lub wartość). Wtedy między biegunami elektromagnesu powstanie zmienne pole magnetyczne, które indukuje napięcie elektryczne w nieruchomym przewodzie znajdującym się w tym polu. Według takiej zasady działają transformatory: podwyższają lub obniżają napięcie przemienne. Według pierwszej lub drugiej zasady działają prądnice, i ta mała w Twoim rowerze, i ta wielka w elektrowni. Wiesz na pewno, że każdy samochód musi mieć swoją prądnicę. We współczesnych samochodach prądnice prądu przemiennego zwane są alternatorami. W alternatorach prąd jest wytwarzany w uzwojeniach stojana, tj. w elementach nieobracających się. Natomiast wirnik jest magnesem lub elektromagnesem, do którego prąd elektryczny o małym natężeniu doprowadzany jest przez pierścienie i małe węglowe szczotki. W zależności od obciążenia alternatora, wartość tego prądu jest zmieniana regulatorem elektronicznym. Jest on przymocowany do konstrukcji alternatora, w którego obudowie znajduje się też elektroniczny, diodowy prostownik. Elektroniczne elementy obu tych układów są wrażliwe na zbyt wysokie napięcie. Alternator w swej budowie jest podobny do wielkich prądnic (generatorów) w elektrowniach. Z jego uzwojeń otrzymuje się prąd trójfazowy, tak jak z generatora elektrowni. Silnik sprzężony z prądnicą nazywa się agregatem prądotwórczym, a w elektrowni turbogeneratorem. Same prądnice w czasie swojej pracy nie zanieczyszczają naturalnego środowiska, nie licząc promieniowania elektromagnetycznego, które zawsze towarzyszy przepływowi prądu przemiennego. Natomiast zanieczyszczają środowisko silniki napędzające prądnice. Najbardziej te silniki, dla których nośnikiem energii jest węgiel. Czyste, ekologiczne są elektrownie wykorzystujące energię wiatru, wody i słońca. W naszym kraju w niewielkim stopniu korzysta się z tych źródeł. Pytania i zadania 1. Rozbierz zepsutą prądnicę rowerową, żeby zobaczyć, co się w tej prądnicy obraca: magnes czy cewki. Opisz, jak jest odprowadzone napięcie z cewki prądnicy rowerowej. 2. Czy miniaturowy silnik do zabawek może wytwarzać napięcie przy obracaniu jego wirnika? Jak możesz to sprawdzić praktycznie? 3. Czy prądnica rowerowa wytwarza napięcie przemienne czy stale? Jak możesz to sprawdzić? 4. Czy prądnica prądu stałego może też pełnić funkcję silnika? Ogniwa galwaniczne W 1786 roku Luigi Galvani dokonał słynnego odkrycia, że przy jednoczesnym dotknięciu mięśnia wypreparowanej kończyny żaby dwoma różnymi metalami połączonymi ze sobą jednym końcem - mięsień kurczy się. Od jego nazwiska wywodzą się nazwy związane z procesami galwanicznymi, np. ogniwo galwaniczne. Pierwszym źródłem energii elektrycznej, które miało praktyczne zastosowania, było źródło chemiczne. Aleksander Volta zbudował w 1800 roku ogniwo galwaniczne, do którego użył kwasu siarkowego jako elektrolitu, a płytek cynkowych i miedzianych jako elektrod. Badał za pomocą tego ogniwa wpływ bodźców elektrycznych na różne narządy. Od jego nazwiska pochodzi nazwa jednostki napięcia elektrycznego volt (V). Ogniwo, które zbudował, miało napięcie równe 1,1 V. Ogniwo Volty nie miało większego zastosowania w praktyce. Duże zastosowanie praktyczne znalazło dopiero ogniwo Leclanchego. Nazwa pochodzi od nazwiska francuskiego wynalazcy Georgesa Leclanchego, który opatentował je w 1866 roku. W ogniwie Leclanchego elektrodą dodatnią jest specjalnie spreparowany węgiel, elektrodą ujemną cynk, elektrolitem zaś jest roztwór chlorku amonu (salmiaku). Jest to najprostszy, a zarazem najstarszy rodzaj ogniwa stosowany do dziś. Współczesną jego konstrukcję przedstawia rysunek 10. W ogniwie tym zachodzą procesy chemiczne między cynkiem, chlorkiem amonu i dwutlenkiem manganu, powodując powstanie siły elektromotorycznej (SEM) o wartości 1,5 V. Cechą charakterystyczną ogniwa jest jego pojemność elektryczna mierzona w amperogodzinach. Pojemnością elektryczną ogniwa nazywamy ilość energii elektrycznej, którą może wytworzyć ogniwo na drodze przemian chemicznych aż do chwili jego wyczerpania. Kolejnym parametrem ogniwa jest jego rezystancja wewnętrzna wyrażona w omach. Ogniwo Leclanchego należy do grupy ogniw nieodnawialnych, tzn. że nie można go naładować prądem, tak jak akumulatora. Próba ładowania ogniwa jest niebezpieczna, bowiem grozi wybuchem gazów. Do ogniw nieodnawialnych należą alkaliczne ogniwa manganowe powszechnie stosowane jako popularne ogniwa o długim czasie życia (ryc. 11). SEM tego ogniwa wynosi 1,5 V, jego czas życia i pojemność są kilkakrotnie większe niż ogniwa Leclanchego. Inne ogniwa nieodnawialne to: * tlenkowo-srebrowe - stabilne SEM o wartości 1,5 V, drogie; stosowane w zegarkach i aparatach słuchowych, * litowe - SEM od 3,8 do 3,0 V, mające bardzo dobry stosunek magazynowanej energii do rozmiarów, długi czas magazynowania (90% pojemności po 5 latach); stosowane jako baterie podtrzymujące (back up batteries) w pamięciach komputerowych o małym poborze mocy. Baterie Bateria jest zbudowana z jednakowych ogniw połączonych szeregowo w celu uzyskania większego napięcia. Na przykład płaska bateria do latarki jest złożona z trzech połączonych szeregowo ogniw Leclanchego. Jej napięcie wynosi 3 x 1,5 V = 4,5 V, a pobór prądu nie powinien przekraczać 0,5 A. Napięcie na zaciskach baterii równa się sumie napięć ogniw. Gdy czerpany prąd jest większy od znamionowego, może powstać gwałtowny spadek napięcia na zaciskach baterii. Szeregowo można łączyć zarówno odnawialne, jak i nieodnawialne źródła energii elektrycznej. Na przykład w akumulatorze samochodowym (odnawialny) jest połączonych szeregowo sześć ogniw kwasowo-ołowiowych, co daje na zaciskach akumulatora 6x2V= 12 V. Rezystancje wewnętrzne ogniw połączonych szeregowo też sumują się tak, jak ich napięcia. Czasami łączy się ogniwa równolegle w celu zwiększenia wydajności prądowej i pojemności bez zwiększania napięcia. Rezystancja dwóch jednakowych ogniw połączonych równolegle równa jest połowie rezystancji jednego ogniwa. Pytania i zadania 1. Opisz budowę wybranego ogniwa galwanicznego. 2. Dlaczego ogniwa nieodnawialne nie mogą być ładowane prądem? 3. Do jakich urządzeń stosujesz baterie? Podaj parametry tych baterii. 4. Od czego zależy pojemność elektryczna baterii, a od czego napięcie? 5. Jak można wykonać baterię 12-woltową z pojedynczych ogniw? 6. W naszym kraju nie zbiera się zużytych baterii w celu ich wykorzystania jako surowca wtórnego. Jakie rozwiązanie zaproponowałbyś, aby zapobiec zatruwaniu środowiska przez zużyte baterie? . 381 758 389 584 700 543 261 687